Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.280
Filtrar
1.
J Ethnopharmacol ; : 118278, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38710457

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xihuang pills, a time-honored Chinese compound formula with a history spanning thousands of years, have demonstrated remarkable efficacy in treating various cancers, such as breast cancer, colon cancer, and liver cancer. Clinical applications over the years have established their effectiveness. Several scholars conducting experimental studies have elucidated the potent tumor-suppressing effects of Xihuang pills. While the inhibition of tumor vascular development and prevention of tumor cell invasion and metastasis have been well-explored mechanisms, the impact on the tumor immune microenvironment has received less attention. This study focuses on investigating the immune microenvironment adjustments induced by Xihuang pills in hepatocellular carcinoma. AIM OF THE STUDY: Tumour cells will find an escape phenomenon during tumour immunotherapy, which will affect immunotherapy results. We will research the regulation of the tumour immune microenvironment, to provide a more complete and precise basis for the elucidation of the mechanism of Xihuang pills in treating cancers.It provides new research ideas for people to treat liver cancer. MATERIALS AND METHODS: Through in vivo and in vitro assessments confirming the intervention effects of Xihuang pills, we observed alterations in T cell typing, macrophage polarization, and tumor-associated cytokine levels. The primary active ingredients of Xihuang pills were identified using UPLC-MS/GC-MS, and relevant pathways in the treatment of hepatocellular carcinoma were predicted through network pharmacology. Combining the network pharmacology approach, we predicted the pathways relevant to Xihuang pills in treating hepatocellular carcinoma and experimentally validated the involvement of PD-1/PD-L1, a key immunity-related axis. RESULTS: Xihuang Pill has a regulatory effect on the tumor immune microenvironment. CONCLUSIONS: The results indicated that Xihuang pills could impact splenic lymphocyte phenotyping, macrophage polarization, and IL-6 cytokine expression in liver cancer mice.The mechanism of action was associated with the regulation of the PD-1/PD-L1 signaling pathway by the STAT3 protein.

2.
J Transl Med ; 22(1): 423, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704606

RESUMO

BACKGROUND: Cancer stem cells (CSCs) and long non-coding RNAs (lncRNAs) are known to play a crucial role in the growth, migration, recurrence, and drug resistance of tumor cells, particularly in triple-negative breast cancer (TNBC). This study aims to investigate stemness-related lncRNAs (SRlncRNAs) as potential prognostic indicators for TNBC patients. METHODS: Utilizing RNA sequencing data and corresponding clinical information from the TCGA database, and employing Weighted Gene Co-expression Network Analysis (WGCNA) on TNBC mRNAsi sourced from an online database, stemness-related genes (SRGs) and SRlncRNAs were identified. A prognostic model was developed using univariate Cox and LASSO-Cox analysis based on SRlncRNAs. The performance of the model was evaluated using Kaplan-Meier analysis, ROC curves, and ROC-AUC. Additionally, the study delved into the underlying signaling pathways and immune status associated with the divergent prognoses of TNBC patients. RESULTS: The research identified a signature of six SRlncRNAs (AC245100.6, LINC02511, AC092431.1, FRGCA, EMSLR, and MIR193BHG) for TNBC. Risk scores derived from this signature were found to correlate with the abundance of plasma cells. Furthermore, the nominated chemotherapy drugs for TNBC exhibited considerable variability between different risk score groups. RT-qPCR validation confirmed abnormal expression patterns of these SRlncRNAs in TNBC stem cells, affirming the potential of the SRlncRNAs signature as a prognostic biomarker. CONCLUSION: The identified signature not only demonstrates predictive power in terms of patient outcomes but also provides insights into the underlying biology, signaling pathways, and immune status associated with TNBC prognosis. The findings suggest the possibility of guiding personalized treatments, including immune checkpoint gene therapy and chemotherapy strategies, based on the risk scores derived from the SRlncRNA signature. Overall, this research contributes valuable knowledge towards advancing precision medicine in the context of TNBC.


Assuntos
Simulação por Computador , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Prognóstico , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Feminino , Resultado do Tratamento , Animais , Estimativa de Kaplan-Meier , Redes Reguladoras de Genes , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Curva ROC , Perfilação da Expressão Gênica , Modelos de Riscos Proporcionais , Imunidade/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
3.
Pharmacol Res ; 204: 107197, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38692467

RESUMO

The existing body of research underscores the critical impact of intratumoral microbiomes on the progression of pancreatic ductal adenocarcinoma (PDAC), particularly in reshaping the tumor microenvironment and influencing gemcitabine resistance. However, peritumoral tissues' microbiome, distinct from PDAC tumors, remain understudied, and Western-centric analyses overlooking potential variations in dietary-influenced microbiomes. Our study addresses this gap by 16 S rRNA sequencing of PDAC tumors and matched peritumoral tissues from Chinese Mainland patients. Our research has uncovered that the microbiome composition within tumors and paired peritumoral tissues exhibits a high degree of similarity, albeit with certain discrepancies. Notably, Exiguobacterium is found to be more abundant within the tumor tissues. Further investigations have revealed that a lower Exiguobacterium/Bacillus ratio in both the tumor and peritumoral tissues of PDAC patients is indicative of a more favorable prognosis. Further exploration utilizing an orthotopic tumor model demonstrates that the probiotic Bacillus Coagulans impedes PDAC progression, accompanied by an increased infiltration of inflammatory neutrophils in tumors. Additionally, in the subgroup with a low Exiguobacterium/Bacillus ratio, whole-exome sequencing reveals elevated missense mutations in ABL2 and MSH2. The elevated expression of ABL2 and MSH2 has been correlated with poorer prognostic outcomes in PDAC patients. Together, these insights shed light on risk factors influencing PDAC progression and unveil potential therapeutic targets, alongside probiotic intervention strategies.

4.
Adv Sci (Weinh) ; : e2403858, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704691

RESUMO

Cancer immunotherapy has demonstrated significant efficacy in various tumors, but its effectiveness in treating Hepatocellular Carcinoma (HCC) remains limited. Therefore, there is an urgent need to identify a new immunotherapy target and develop corresponding intervention strategies. Bioinformatics analysis has revealed that growth differentiation factor 15 (GDF15) is highly expressed in HCC and is closely related to poor prognosis of HCC patients. The previous study revealed that GDF15 can promote immunosuppression in the tumor microenvironment. Therefore, knocking out GDF15 through gene editing could potentially reverse the suppressive tumor immune microenvironment permanently. To deliver the CRISPR/Cas9 system specifically to HCC, nanocapsules (SNC) coated with HCC targeting peptides (SP94) on their surface is utilized. These nanocapsules incorporate disulfide bonds (SNCSS) that release their contents in the tumor microenvironment characterized by high levels of glutathione (GSH). In vivo, the SNCSS target HCC cells, exert a marked inhibitory effect on HCC progression, and promote HCC immunotherapy. Mechanistically, CyTOF analysis showed favorable changes in the immune microenvironment of HCC, immunocytes with killer function increased and immunocytes with inhibitive function decreased. These findings highlight the potential of the CRISPR-Cas9 gene editing system in modulating the immune microenvironment and improving the effectiveness of existing immunotherapy approaches for HCC.

5.
Arab J Gastroenterol ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38705811

RESUMO

BACKGROUND AND STUDY AIMS: Immunotherapy has emerged as a hot topic in cancer treatment in recent years and has also shown potential in the treatment of Helicobacter pylori-associated gastric cancer. However, there is still a need to identify potential immunotherapy targets. MATERIAL AND METHODS: We used the GSE116312 dataset of Helicobacter pylori-associated gastric cancer to identify differentially expressed genes, which were then overlapped with immune genes from the ImmPort database. The identified immune genes were used to classify gastric cancer samples and evaluate the relationship between classification and tumor mutations, as well as immune infiltration. An immune gene-based prognostic model was constructed, and the expression levels of the genes involved in constructing the model were explored in the tumor immune microenvironment. RESULTS: We successfully identified 60 immune genes and classified gastric cancer samples into two subtypes, which showed differences in prognosis, tumor mutations, immune checkpoint expression, and immune cell infiltration. Subsequently, we constructed an immune prognostic model consisting of THBS1 and PDGFD, which showed significant associations with macrophages and fibroblasts. CONCLUSION: We identified abnormal expression of THBS1 and PDGFD in cancer-associated fibroblasts (CAFs) within the tumor immune microenvironment, suggesting their potential as therapeutic targets.

6.
Comput Struct Biotechnol J ; 23: 1689-1704, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38689717

RESUMO

Background: Mounting evidence underscores the importance of cell communication within the tumor microenvironment, which is pivotal in tumor proliferation, invasion, and metastasis. Exosomes play a crucial role in cell-to-cell communication. Although single-cell RNA sequencing (scRNA-seq) provides insights into individual cell transcriptional characteristics, it falls short of comprehensively capturing exosome-mediated intercellular communication. Method: We analyzed Pancreatic Ductal Adenocarcinoma (PDAC) tissues, separating supernatant and precipitate for exosome purification and single-cell nucleus suspension. We then constructed Single-nucleus RNA sequencing (snRNA-seq) and small RNA-seq libraries from these components. Our bioinformatic analysis integrated these sequences with ligand-receptor analysis and public miRNA data to map the cell communication network. Results: We established intercellular communication networks using bioinformatic analysis to track exosome miRNA effects and ligand-receptor pairs. Significantly, hsa-miR-1293 emerged as a prognostic biomarker for pancreatic cancer, linked to immune evasion, increased myeloid-derived suppressor cells, and poorer prognosis. Targeting this miRNA may enhance anti-tumor immunity and improve outcomes. Conclusion: Our study offers a novel approach to constructing intercellular communication networks using snRNA-seq and exosome-small RNA sequencing. By integrating miRNA tracing with ligand-receptor analysis, we illuminate the complex interactions in the pancreatic cancer microenvironment, highlighting the pivotal role of miRNAs and identifying potential biomarkers and therapeutic targets.

7.
World J Gastroenterol ; 30(16): 2195-2208, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38690024

RESUMO

As a highly invasive malignancy, esophageal cancer (EC) is a global health issue, and was the eighth most prevalent cancer and the sixth leading cause of cancer-related death worldwide in 2020. Due to its highly immunogenic nature, emer-ging immunotherapy approaches, such as immune checkpoint blockade, have demonstrated promising efficacy in treating EC; however, certain limitations and challenges still exist. In addition, tumors may exhibit primary or acquired resistance to immunotherapy in the tumor immune microenvironment (TIME); thus, understanding the TIME is urgent and crucial, especially given the im-portance of an immunosuppressive microenvironment in tumor progression. The aim of this review was to better elucidate the mechanisms of the suppressive TIME, including cell infiltration, immune cell subsets, cytokines and signaling pathways in the tumor microenvironment of EC patients, as well as the downregulated expression of major histocompatibility complex molecules in tumor cells, to obtain a better understanding of the differences in EC patient responses to immunotherapeutic strategies and accurately predict the efficacy of immunotherapies. Therefore, personalized treatments could be developed to maximize the advantages of immunotherapy.


Assuntos
Neoplasias Esofágicas , Imunoterapia , Microambiente Tumoral , Microambiente Tumoral/imunologia , Humanos , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/terapia , Imunoterapia/métodos , Transdução de Sinais/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Citocinas/metabolismo , Citocinas/imunologia , Evasão Tumoral , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo
8.
Front Immunol ; 15: 1372441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690269

RESUMO

Background and aims: Cuproptosis has emerged as a significant contributor in the progression of various diseases. This study aimed to assess the potential impact of cuproptosis-related genes (CRGs) on the development of hepatic ischemia and reperfusion injury (HIRI). Methods: The datasets related to HIRI were sourced from the Gene Expression Omnibus database. The comparative analysis of differential gene expression involving CRGs was performed between HIRI and normal liver samples. Correlation analysis, function enrichment analyses, and protein-protein interactions were employed to understand the interactions and roles of these genes. Machine learning techniques were used to identify hub genes. Additionally, differences in immune cell infiltration between HIRI patients and controls were analyzed. Quantitative real-time PCR and western blotting were used to verify the expression of the hub genes. Results: Seventy-five HIRI and 80 control samples from three databases were included in the bioinformatics analysis. Three hub CRGs (NLRP3, ATP7B and NFE2L2) were identified using three machine learning models. Diagnostic accuracy was assessed using a receiver operating characteristic (ROC) curve for the hub genes, which yielded an area under the ROC curve (AUC) of 0.832. Remarkably, in the validation datasets GSE15480 and GSE228782, the three hub genes had AUC reached 0.904. Additional analyses, including nomograms, decision curves, and calibration curves, supported their predictive power for diagnosis. Enrichment analyses indicated the involvement of these genes in multiple pathways associated with HIRI progression. Comparative assessments using CIBERSORT and gene set enrichment analysis suggested elevated expression of these hub genes in activated dendritic cells, neutrophils, activated CD4 memory T cells, and activated mast cells in HIRI samples versus controls. A ceRNA network underscored a complex regulatory interplay among genes. The genes mRNA and protein levels were also verified in HIRI-affected mouse liver tissues. Conclusion: Our findings have provided a comprehensive understanding of the association between cuproptosis and HIRI, establishing a promising diagnostic pattern and identifying latent therapeutic targets for HIRI treatment. Additionally, our study offers novel insights to delve deeper into the underlying mechanisms of HIRI.


Assuntos
Biologia Computacional , Aprendizado de Máquina , Traumatismo por Reperfusão , Humanos , Biologia Computacional/métodos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/diagnóstico , Perfilação da Expressão Gênica , Fígado/metabolismo , Fígado/imunologia , Fígado/patologia , Animais , Mapas de Interação de Proteínas , Camundongos , Redes Reguladoras de Genes , Bases de Dados Genéticas , Transcriptoma , Masculino , Biomarcadores
9.
Adv Sci (Weinh) ; : e2400297, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704675

RESUMO

It is newly revealed that collagen works as a physical barrier to tumor immune infiltration, oxygen perfusion, and immune depressor in solid tumors. Meanwhile, after radiotherapy (RT), the programmed death ligand-1 (PD-L1) overexpression and transforming growth factor-ß (TGF-ß) excessive secretion would accelerate DNA damage repair and trigger T cell exclusion to limit RT efficacy. However, existing drugs or nanoparticles can hardly address these obstacles of highly effective RT simultaneously, effectively, and easily. In this study, it is revealed that inducing mitochondria dysfunction by using oxidative phosphorylation inhibitors like Lonidamine (LND) can serve as a highly effective multi-immune pathway regulation strategy through PD-L1, collagen, and TGF-ß co-depression. Then, IR-LND is prepared by combining the mitochondria-targeted molecule IR-68 with LND, which then is loaded with liposomes (Lip) to create IR-LND@Lip nanoadjuvants. By doing this, IR-LND@Lip more effectively sensitizes RT by generating more DNA damage and transforming cold tumors into hot ones through immune activation by PD-L1, collagen, and TGF-ß co-inhibition. In conclusion, the combined treatment of RT and IR-LND@Lip ultimately almost completely suppressed the growth of bladder tumors and breast tumors.

10.
Discov Oncol ; 15(1): 139, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691253

RESUMO

BACKGROUND: Interleukin-4 inducible gene 1 (IL4I1) regulates tumor progression in numerous tumor types. However, its correlation with immune infiltration and prognosis of patients in a pan-cancer setting remains unclear. METHODS: Data from the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), UALCAN, Clinical Proteomic Tumor Analysis Consortium (CPTAC), Gene Expression Omnibus (GEO), cBioPortal, Cancer Single-cell State Atlas (CancerSEA), and Tumor IMmune Estimation Resource(TIMER) databases were used to evaluate IL4I1 expression, clinical features and prognostic effects, gene set enrichment, and correlation with immune cell infiltration, as well as the relationship between IL4I1 methylation and expression and survival prognosis. Correlations with 192 anticancer drugs were also analyzed. RESULTS: IL4I1 was significantly overexpressed in the majority of tumors, and the imbalance of IL4I1 was significantly correlated with overall survival and pathological stage. Moreover, total IL4I1 protein was increased in cancer. Therefore, IL4I1 may be used as a prognostic biomarker or protective factor in numerous types of cancer. The methylation level of IL4I1 may also be used as a prognostic marker. The functional enrichment of IL4I1 was closely related to the immunomodulatory pathway. In addition, the level of tumor-associated macrophage infiltration was positively correlated with the expression of IL4I1 in pan-cancerous tissues. scRNA-seq analysis suggested that IL4I1 differ significantly among different cells in the tumor microenvironment and was most enriched in macrophages. Various immune checkpoint genes were positively correlated with IL4I1 expression in most tumors. In addition, patients with high IL4I1 expression may be resistant to BMS-754807 and docetaxel, but sensitive to temozolomide. CONCLUSION: IL4I1 may play a role as promoter of cancer and prognostic indicator in patients. High expression of IL4I1 is associated with the state of tumor immunosuppression and may contribute to tumor-associated macrophage invasion. Therefore, IL4I1 may be a new therapeutic target for the treatment and prognosis of patients with cancer.

11.
Heliyon ; 10(8): e30123, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38699735

RESUMO

Background: Tumor genetic anomalies and immune dysregulation are pivotal in the progression of multiple myeloma (MM). Accurate patient stratification is essential for effective MM management, yet current models fail to comprehensively incorporate both molecular and immune profiles. Methods: We examined 776 samples from the MMRF CoMMpass database, employing univariate regression with LASSO and CIBERSORT algorithms to identify 15 p53-related genes and six immune cells with prognostic significance in MM. A p53-TIC (tumor-infiltrating immune cells) classifier was constructed by calculating scores using the bootstrap-multicox method, which was further validated externally (GSE136337) and through ten-fold internal cross-validation for its predictive reliability and robustness. Results: The p53-TIC classifier demonstrated excellent performance in predicting the prognosis in MM. Specifically, patients in the p53low/TIChigh subgroup had the most favorable prognosis and the lowest tumor mutational burden (TMB). Conversely, those in the p53high/TIClow subgroup, with the least favorable prognosis and the highest TMB, were predicted to have the best anti-PD1 and anti-CTLA4 response rate (40 %), which can be explained by their higher expression of PD1 and CTLA4. The three-year area under the curve (AUC) was 0.80 in the total sample. Conclusions: Our study highlights the potential of an integrated analysis of p53-associated genes and TIC in predicting prognosis and aiding clinical decision-making in MM patients. This finding underscores the significance of comprehending the intricate interplay between genetic abnormalities and immune dysfunction in MM. Further research into this area may lead to the development of more effective treatment strategies.

12.
Curr Nutr Rep ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696074

RESUMO

PURPOSE OF REVIEW: Since obesity is a major risk factor for many different types of cancer, examining one of the most closely associated comorbidities, such as hypercholesterolemia, is crucial to understanding how obesity causes cancer. Hypercholesterolemia is usually associated with many cardiovascular complications such as hypertension, angina, and atherosclerosis. In addition, cholesterol may be a major factor in increasing cancer risk. Cancer patients who received statins, an anti-hypercholesteremic medicine, demonstrated improved prognosis possibly through its effect on tumor proliferation, apoptosis, and oxidative stress. Cholesterol could also aid in tumor progression through reprogramming tumor immunological architecture and mediators. This review focuses on the immunomodulatory role of cholesterol on cellular and molecular levels, which may explain its oncogenic driving activity. We look at how cholesterol modulates tumor immune cells like dendritic cells, T cells, Tregs, and neutrophils. Further, this study sheds light on the modification of the expression pattern of the common cancer-related immune mediators in the tumor immune microenvironment, such as programmed cell death 1 (PD-1), cytotoxic T lymphocyte antigen-4 (CTLA-4), transforming growth factor-beta (TGF-ß), interleukin 12 (IL-12), IL-23, and forkhead box protein P3 (FOXP3). RECENT FINDINGS: We highlight relevant literature demonstrating cholesterol's immunosuppressive role, leading to a worse cancer prognosis. This review invites further research regarding the pathobiological role of cholesterol in many obesity-related cancers such as uterine fibroids, post-menopausal breast, colorectal, endometrial, kidney, esophageal, pancreatic, liver, and gallbladder cancers. This review suggests that targeting cholesterol synthesis may be a fruitful approach to cancer targeting, in addition to traditional chemotherapeutics.

13.
Front Immunol ; 15: 1312380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726002

RESUMO

Objective: The choice of neoadjuvant therapy for esophageal squamous cell carcinoma (ESCC) is controversial. This study aims to provide a basis for clinical treatment selection by establishing a predictive model for the efficacy of neoadjuvant immunochemotherapy (NICT). Methods: A retrospective analysis of 30 patients was conducted, divided into Response and Non-response groups based on whether they achieved major pathological remission (MPR). Differences in genes and immune microenvironment between the two groups were analyzed through next-generation sequencing (NGS) and multiplex immunofluorescence (mIF). Variables most closely related to therapeutic efficacy were selected through LASSO regression and ROC curves to establish a predictive model. An additional 48 patients were prospectively collected as a validation set to verify the model's effectiveness. Results: NGS suggested seven differential genes (ATM, ATR, BIVM-ERCC5, MAP3K1, PRG, RBM10, and TSHR) between the two groups (P < 0.05). mIF indicated significant differences in the quantity and location of CD3+, PD-L1+, CD3+PD-L1+, CD4+PD-1+, CD4+LAG-3+, CD8+LAG-3+, LAG-3+ between the two groups before treatment (P < 0.05). Dynamic mIF analysis also indicated that CD3+, CD8+, and CD20+ all increased after treatment in both groups, with a more significant increase in CD8+ and CD20+ in the Response group (P < 0.05), and a more significant decrease in PD-L1+ (P < 0.05). The three variables most closely related to therapeutic efficacy were selected through LASSO regression and ROC curves: Tumor area PD-L1+ (AUC= 0.881), CD3+PD-L1+ (AUC= 0.833), and CD3+ (AUC= 0.826), and a predictive model was established. The model showed high performance in both the training set (AUC= 0.938) and the validation set (AUC= 0.832). Compared to the traditional CPS scoring criteria, the model showed significant improvements in accuracy (83.3% vs 70.8%), sensitivity (0.625 vs 0.312), and specificity (0.937 vs 0.906). Conclusion: NICT treatment may exert anti-tumor effects by enriching immune cells and activating exhausted T cells. Tumor area CD3+, PD-L1+, and CD3+PD-L1+ are closely related to therapeutic efficacy. The model containing these three variables can accurately predict treatment outcomes, providing a reliable basis for the selection of neoadjuvant treatment plans.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Terapia Neoadjuvante , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Carcinoma de Células Escamosas do Esôfago/terapia , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Terapia Neoadjuvante/métodos , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Prognóstico , Idoso , Biomarcadores Tumorais , Resultado do Tratamento , Imunoterapia/métodos
14.
Front Immunol ; 15: 1388574, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726015

RESUMO

Background: Extracellular vesicles (EVs) are small, transparent vesicles that can be found in various biological fluids and are derived from the amplification of cell membranes. Recent studies have increasingly demonstrated that EVs play a crucial regulatory role in tumorigenesis and development, including the progression of metastatic tumors in distant organs. Brain metastases (BMs) are highly prevalent in patients with lung cancer, breast cancer, and melanoma, and patients often experience serious complications and are often associated with a poor prognosis. The immune microenvironment of brain metastases was different from that of the primary tumor. Nevertheless, the existing review on the role and therapeutic potential of EVs in immune microenvironment of BMs is relatively limited. Main body: This review provides a comprehensive analysis of the published research literature, summarizing the vital role of EVs in BMs. Studies have demonstrated that EVs participate in the regulation of the BMs immune microenvironment, exemplified by their ability to modify the permeability of the blood-brain barrier, change immune cell infiltration, and activate associated cells for promoting tumor cell survival and proliferation. Furthermore, EVs have the potential to serve as biomarkers for disease surveillance and prediction of BMs. Conclusion: Overall, EVs play a key role in the regulation of the immune microenvironment of brain metastasis and are expected to make advances in immunotherapy and disease diagnosis. Future studies will help reveal the specific mechanisms of EVs in brain metastases and use them as new therapeutic strategies.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Microambiente Tumoral , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/imunologia , Microambiente Tumoral/imunologia , Animais , Biomarcadores Tumorais/metabolismo , Barreira Hematoencefálica/metabolismo
15.
Cells ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38727262

RESUMO

Glioblastoma (GBM) is the most common primary malignant brain tumor, with a median overall survival of less than 2 years and a nearly 100% mortality rate under standard therapy that consists of surgery followed by combined radiochemotherapy. Therefore, new therapeutic strategies are urgently needed. The success of chimeric antigen receptor (CAR) T cells in hematological cancers has prompted preclinical and clinical investigations into CAR-T-cell treatment for GBM. However, recent trials have not demonstrated any major success. Here, we delineate existing challenges impeding the effectiveness of CAR-T-cell therapy for GBM, encompassing the cold (immunosuppressive) microenvironment, tumor heterogeneity, T-cell exhaustion, local and systemic immunosuppression, and the immune privilege inherent to the central nervous system (CNS) parenchyma. Additionally, we deliberate on the progress made in developing next-generation CAR-T cells and novel innovative approaches, such as low-intensity pulsed focused ultrasound, aimed at surmounting current roadblocks in GBM CAR-T-cell therapy.


Assuntos
Glioblastoma , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Glioblastoma/terapia , Glioblastoma/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Microambiente Tumoral/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Linfócitos T/imunologia , Animais
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 727-738, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38708507

RESUMO

OBJECTIVE: To identify the key genes differentially expressed in Wilms tumor and analyze their potential impacts on prognosis and immune responses of the patients. METHODS: High-throughput RNA sequencing was used to identify the differentially expressed mRNAs in clinical samples of Wilms tumor and paired normal tissues, and their biological functions were analyzed using GO, KEGG and GSEA enrichment analyses. The hub genes were identified using STRING database, based on which a prognostic model was constructed using LASSO regression. The mutations of the key hub genes were analyzed and their impacts on immunotherapy efficacy was predicted using the cBioPortal platform. RT-qPCR was used to verify the differential expressions of the key hub genes in Wilms tumor. RESULTS: Of the 1612 differentially expressed genes identified in Wilms tumor, 1030 were up-regulated and 582 were down-regulated, involving mainly cell cycle processes and immune responses. Ten hub genes were identified, among which 4 genes (TP53, MED1, CCNB1 and EGF) were closely related to the survival of children with Wilms tumor. A 3-gene prognostic signature was constructed through LASSO regression analysis, and the patients stratified into with high- and low-risk groups based on this signature had significantly different survival outcomes (HR=1.814, log-rank P=0.002). The AUCs of the 3-, 5- and 7-year survival ROC curves of this model were all greater than 0.7. The overall mutations in the key hub genes or the individual mutations in TP53/CCNB1 were strongly correlated with a lower survival rates, and a high TP53 expression was correlated with a poor immunotherapy efficacy. RT-qPCR confirmed that the key hub genes had significant differential expressions in Wilms tumor tissues and cells. CONCLUSION: TP53 gene plays an important role in the Wilms tumor and may potentially serve as a new immunotherapeutic biomarker as well as a therapeutic target.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Tumor de Wilms , Humanos , Tumor de Wilms/genética , Tumor de Wilms/imunologia , Prognóstico , Análise de Sequência de RNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Perfilação da Expressão Gênica , RNA Mensageiro/genética , Mutação , Proteína Supressora de Tumor p53/genética , Imunoterapia , Ciclina B1/genética , Criança
17.
Cancer Sci ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720474

RESUMO

Occult lymph node metastasis (OLNM) is one of the main causes of regional recurrence in inoperable N0 non-small cell lung cancer (NSCLC) patients following stereotactic ablation body radiotherapy (SABR) treatment. The integration of immunotherapy and SABR (I-SABR) has shown preliminary efficiency in mitigating this recurrence. Therefore, it is necessary to explore the functional dynamics of critical immune effectors, particularly CD8+ T cells in the development of OLNM. In this study, tissue microarrays (TMAs) and multiplex immunofluorescence (mIF) were used to identify CD8+ T cells and functional subsets (cytotoxic CD8+ T cells/predysfunctional CD8+ T cells (CD8+ Tpredys)/dysfunctional CD8+ T cells (CD8+ Tdys)/other CD8+ T cells) among the no lymph node metastasis, OLNM, and clinically evident lymph node metastasis (CLNM) groups. As the degree of lymph node metastasis escalated, the density of total CD8+ T cells and CD8+ Tdys cells, as well as their proximity to tumor cells, increased progressively and remarkably in the invasive margin (IM). In the tumor center (TC), both the density and proximity of CD8+ Tpredys cells to tumor cells notably decreased in the OLNM group compared with the group without metastasis. Furthermore, positive correlations were found between the dysfunction of CD8+ T cells and HIF-1α+CD8 and cancer microvessels (CMVs). In conclusion, the deterioration in CD8+ T cell function and interactive dynamics between CD8+ T cells and tumor cells play a vital role in the development of OLNM in NSCLC. Strategies aimed at improving hypoxia or targeting CMVs could potentially enhance the efficacy of I-SABR.

18.
J Microbiol Biotechnol ; 34(5): 1-14, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38719775

RESUMO

Esophageal squamous cell carcinoma (ESCC) is among the most common malignant tumors of the digestive tract, with the sixth highest fatality rate worldwide. The ESCC-related dataset, GSE20347, was downloaded from the Gene Expression Omnibus (GEO) database, and weighted gene coexpression network analysis was performed to identify genes that are highly correlated with ESCC. A total of 91 transcriptome expression profiles and their corresponding clinical information were obtained from The Cancer Genome Atlas database. A mitochondria-associated risk (MAR) model was constructed using the least absolute shrinkage and selection operator Cox regression analysis and validated using GSE161533. The tumor microenvironment and drug sensitivity were explored using the MAR model. Finally, in vitro experiments were performed to analyze the effects of hub genes on the proliferation and invasion abilities of ESCC cells. To confirm the predictive ability of the MAR model, we constructed a prognostic model and assessed its predictive accuracy. The MAR model revealed substantial differences in immune infiltration and tumor microenvironment characteristics between high- and low-risk populations and a substantial correlation between the risk scores and some common immunological checkpoints. AZD1332 and AZD7762 were more effective for patients in the low-risk group, whereas Entinostat, Nilotinib, Ruxolutinib, and Wnt.c59 were more effective for patients in the high-risk group. Knockdown of TYMS significantly inhibited the proliferation and invasive ability of ESCC cells in vitro. Overall, our MAR model provides stable and reliable results and may be used as a prognostic biomarker for personalized treatment of patients with ESCC.

19.
Aging (Albany NY) ; 162024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38700505

RESUMO

BACKGROUND: Stomach cancer is a leading cause of cancer-related deaths globally due to its high grade and poor response to treatment. Understanding the molecular network driving the rapid progression of stomach cancer is crucial for improving patient outcomes. METHODS: This study aimed to investigate the role of unfolded protein response (UPR) related genes in stomach cancer and their potential as prognostic biomarkers. RNA expression data and clinical follow-up information were obtained from the TCGA and GEO databases. An unsupervised clustering algorithm was used to identify UPR genomic subtypes in stomach cancer. Functional enrichment analysis, immune landscape analysis, and chemotherapy benefit prediction were conducted for each subtype. A prognostic model based on UPR-related genes was developed and validated using LASSO-Cox regression, and a multivariate nomogram was created. Key gene expression analyses in pan-cancer and in vitro experiments were performed to further investigate the role of the identified genes in cancer progression. RESULTS: A total of 375 stomach cancer patients were included in this study. Analysis of 113 UPR-related genes revealed their close functional correlation and significant enrichment in protein modification, transport, and RNA degradation pathways. Unsupervised clustering identified two molecular subtypes with significant differences in prognosis and gene expression profiles. Immune landscape analysis showed that UPR may influence the composition of the tumor immune microenvironment. Chemotherapy sensitivity analysis indicated that patients in the C2 molecular subtype were more responsive to chemotherapy compared to those in the C1 molecular subtype. A prognostic signature consisting of seven UPR-related genes was constructed and validated, and an independent prognostic nomogram was developed. The gene IGFBP1, which had the highest weight coefficient in the prognostic signature, was found to promote the malignant phenotype of stomach cancer cells, suggesting its potential as a therapeutic target. CONCLUSIONS: The study developed a UPR-related gene classifier and risk signature for predicting survival in stomach cancer, identifying IGFBP1 as a key factor promoting the disease's malignancy and a potential therapeutic target. IGFBP1's role in enhancing cancer cell adaptation to endoplasmic reticulum stress suggests its importance in stomach cancer prognosis and treatment.

20.
BMC Cancer ; 24(1): 567, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711020

RESUMO

BACKGROUND: Pyroptosis is a type of programmed cell death mediated by the gasdermin family. Gasdermin B (GSDMB), as a member of gasdermin family, can promote the occurrence of cell pyroptosis. However, the correlations of the GSDMB expression in colorectal cancer with clinicopathological predictors, immune microenvironment, and prognosis are unclear. METHODS: Specimens from 267 colorectal cancer cases were analyzed by immunohistochemistry to determine GSDMB expression, CD3+, CD4+, and CD8+ T lymphocytes, CD20+ B lymphocytes, CD68+ macrophages, and S100A8+ immune cells. GSDMB expression in cancer cells was scored in the membrane, cytoplasm, and nucleus respectively. GSDMB+ immune cell density was calculated. Univariate and multivariate survival analyses were performed. The association of GSDMB expression with other clinicopathological variables and immune cells were also analyzed. Double immunofluorescence was used to identify the nature of GSDMB+ immune cells. Cytotoxicity assays and sensitivity assays were performed to detect the sensitivity of cells to 5-fluorouracil. RESULTS: Multivariate survival analysis showed that cytoplasmic GSDMB expression was an independent favorable prognostic indicator. Patients with positive cytoplasmic or nuclear GSDMB expression would benefit from 5-fluorouracil based chemotherapy. The assays in vitro showed that high GSDMB expression enhanced the sensitivity of colorectal cancer cells to 5-fluorouracil. Patients with positive membranous or nuclear GSDMB expression had more abundant S100A8+ immune cells in the tumor invasive front. Positive nuclear GSDMB expression indicated more CD68+ macrophages in the tumor microenvironment. Moreover, GSDMB+ immune cell density in the stroma was associated with a higher neutrophil percentage but a lower lymphocyte counts and monocyte percentage in peripheral blood. Furthermore, the results of double immunofluorescence showed that GSDMB co-expressed with CD68 or S100A8 in stroma cells. CONCLUSION: The GSDMB staining patterns are linked to its role in cancer progression, the immune microenvironment, systemic inflammatory response, chemotherapeutic efficacy, and prognosis. Colorectal cancer cells with high GSDMB expression are more sensitive to 5-fluorouracil. However, GSDMB expression in immune cells has different effects on cancer progression from that in cancer cells.


Assuntos
Neoplasias Colorretais , Progressão da Doença , Gasderminas , Microambiente Tumoral , Humanos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/mortalidade , Masculino , Prognóstico , Feminino , Pessoa de Meia-Idade , Microambiente Tumoral/imunologia , Idoso , Biomarcadores Tumorais/metabolismo , Fluoruracila/uso terapêutico , Fluoruracila/farmacologia , Proteínas de Neoplasias/metabolismo , Imuno-Histoquímica , Adulto , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Piroptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...